Maximal matching stabilizes in time O(m)

نویسندگان

  • Stephen T. Hedetniemi
  • David Pokrass Jacobs
  • Pradip K. Srimani
چکیده

On a network having m edges and n nodes, Hsu and Huang’s self-stabilizing algorithm for maximal matching stabilizes in at most 2m+ n moves.  2001 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the saturation number of graphs

Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...

متن کامل

A New Self-stabilizing Maximal Matching Algorithm

The maximal matching problem has received considerable attention in the selfstabilizing community. Previous work has given different self-stabilizing algorithms that solves the problem for both the adversarial and fair distributed daemon, the sequential adversarial daemon, as well as the synchronous daemon. In the following we present a single self-stabilizing algorithm for this problem that un...

متن کامل

Quantum Algorithms for Matching and Network Flows

We present quantum algorithms for the following graph problems: finding a maximal bipartite matching in time O(n √ m + n log n), finding a maximal non-bipartite matching in time O(n( √ m/n+ log n) log n), and finding a maximal flow in an integer network in time O(min(n √ m · U, √ nUm) log n), where n is the number of vertices, m is the number of edges, and U ≤ n is an upper bound on the capacit...

متن کامل

ar X iv : 1 10 3 . 11 09 v 2 [ cs . D S ] 1 5 A pr 2 01 2 Fully dynamic maximal matching in O ( log n ) update time

We present an algorithm for maintaining maximal matching in a graph under addition and deletion of edges. Our data structure is randomized that takes O(log n) expected amortized time for each edge update where n is the number of vertices in the graph. While there is a trivial O(n) algorithm for edge update, the previous best known result for this problem was due to Ivković and Llyod[4]. For a g...

متن کامل

Reducing rank-maximal to maximum weight matching

Given a bipartite graph G(V,E), V = A ∪̇B where |V | = n, |E| = m and a partition of the edge set into r ≤ m disjoint subsets E = E1 ∪̇E2 ∪̇ . . . ∪̇Er, which are called ranks, the rank-maximal matching problem is to find a matching M of G such that |M ∩ E1| is maximized and given that |M ∩ E1| is maximized, |M ∩ E2| is also maximized, and so on. Such a problem arises as an optimization criteria ov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 80  شماره 

صفحات  -

تاریخ انتشار 2001